Computer graphics III – Multiple Importance Sampling

Jaroslav Křivánek, MFF UK

Jaroslav.Krivanek@mff.cuni.cz

Sampling of environment lighting

$$L_{\rm r}(\omega_{\rm o}) = \int_{H(\mathbf{x})} L_{\rm i}(\omega_{\rm i}) \cdot f_{\rm r}(\omega_{\rm i} \to \omega_{\rm o}) \cdot \cos\theta_{\rm i} \, \mathrm{d}\omega_{\rm i}$$

Sampling of environment lighting

BRDF IS 600 samples

MIS

Diffuse only

Ward BRDF, α =0.2

Ward BRDF, α =0.05

Ward BRDF, α =0.01

Sampling of environment lighting

- Two different sampling strategies for generating the incident direction ω_i
 - **1. BRDF-proportional sampling -** $p_a(\omega_i)$
 - **2.** Environment map-proportional sampling $p_{\rm b}(\omega_{\rm i})$

What is wrong with using either of the two strategies alone?

Notes on the previous slide

- We have a complex multimodal integrand f(x) that we want to numerically integrate using a MC method with importance sampling.
- Unfortunately, we do not have a PDF that would mimic the integrand in the entire domain.
- Instead, we can draw the sample from two different PDFs, p_a and p_b each of which is a good match for the integrand under different conditions i.e. in different part of the domain.
- However, the estimators corresponding to these two PDFs have extremely high variance shown on the slide.
- We can use Multiple Importance Sampling (MIS) to combine the sampling techniques corresponding to the two PDFs into a single, robust, combined technique.
- The MIS procedure is extremely simple: sample from both techniques p_a and p_b , and then takes the sample from the selected distribution.
- This estimator is really powerful at suppressing outlier samples such as those that you would obtain by picking x_{from} the tail of p_a , where f(x) might still be large.
- Without having p_b at our disposal, we would be dividing the large f(x) by the small $p_a(x)$, producing an outlier.
- However, the combined technique has a much higher chance of producing this particular *x* (because it can sample it also from p_b), so the combined estimator divides f(x) by $[p_a(x) + p_b(x)] / 2$, which yields a much more reasonable sample value.
- I want to note that what I'm showing here is called the "balance heuristic" and is a part of a wider theory on weighted combinations of estimators proposed by Veach and Guibas.

Multiple Importance Sampling

First for general estimators, so please forget the direct illumination problem for a short while.

Start with enviro example

Multiple Importance Sampling

- Given *n* sampling techniques (i.e. pdfs) $p_1(x), ..., p_n(x)$
- We take n_i samples $X_{i,1}$, ..., X_{i,n_i} from each technique
- Combined estimator

Combination weights

(different for each sample)

Unbiasedness of the combined estimator

$$E[F] = \dots = \int \left[\sum_{i=1}^{n} w_i(x)\right] f(x) \, \mathrm{d}x \equiv \int f(x)$$

Condition on the weighting functions

$$\forall x: \quad \sum_{i=1}^{n} w_i(x) = 1$$

Choice of the weighting functions

- **Objective:** minimize the variance of the combined estimator
- 1. Arithmetic average (very bad combination)

$$W_i(x) = \frac{1}{n}$$

2. Balance heuristic (very good combination)

••••

Balance heuristic

Combination weights

$$\hat{w}_i(\mathbf{x}) = \frac{n_i p_i(\mathbf{x})}{\sum_k n_k p_k(\mathbf{x})}$$

Resulting estimator (after plugging the weights)

$$F = \sum_{i=1}^{n} \sum_{j=1}^{n_i} \frac{f(X_{i,j})}{\sum_k n_k p_k(X_{i,j})},$$

- The contribution of a sample does not depend on which technique (pdf) it came from
- Effectively, the sample is drawn from a weighted average of the individual pdfs as can be seen from the form of the estimator

Balance heuristic

- The balance heuristic is almost optimal
 - No other weighting has variance much lower than the balance heuristic

Direct illumination calculation using MIS

Application of MIS to environment light sampling

- Two sampling strategies for generating the incident direction ω_i
 - **1. BRDF-proportional sampling -** $p_a(\omega_i)$
 - **2.** Environment map-proportional sampling $p_{\rm b}(\omega_{\rm i})$
- Mindlessly plug $p_a(\omega_i)$ and $p_b(\omega_i)$ into the general formulas above

MIS applied to enviro sampling

BRDF IS 600 samples

MIS

Diffuse only

Ward BRDF, α =0.2

Ward BRDF, α =0.05

Ward BRDF, α =0.01

Area light sampling – Motivation

Sampling technique (pdf) p_a: BRDF sampling

Sampling technique (pdf) p_b: Light source area sampling

MIS-based combination

Arithmetic average Preserves bad properties of both techniques

MIS w/ the balance heuristic Bingo!!!

Area light sampling – Classic Veach's example

BRDF proportional sampling

Light source area sampling

MIS-based combination

Multiple importance sampling & Balance heuristic (Veach & Guibas, 95)

Area light sampling – sampling strategies

- Two sampling strategies as for enviro maps
 - **1.** BRDF-proportional sampling
 - 2. Light source area sampling

Image: Alexander Wilkie

CG III (NPGR010) - J. Křivánek 2015

Direct illumination: Two strategies

BRDF proportional sampling

- Better for large light sources and/or highly glossy BRDFs
- The probability of hitting a small light source is small -> high variance, noise

Light source area sampling

- Better for smaller light sources
- It is the only possible strategy for point sources
- For large sources, many samples are generated outside the BRDF lobe -> high variance, noise

Direct illumination: Two strategies

- Which strategy should we choose?
 Both!
- Both strategies estimate the same quantity L_r(**x**, ω_o)
 A mere sum would estimate 2 x L_r(**x**, ω_o), which is wrong
- We need a weighted average of the techniques, but how to choose the weights? => MIS

MIS weight calculation

Example PDFs

BRDF sampling: p_a(ω)

Depends on the BRDF, e.g. for a Lambertian BRDF:

$$p_a(\omega) = \frac{\cos \theta_{\mathbf{x}}}{\pi}$$

Light source area sampling: p_b(ω)

$$p_b(\omega) = \frac{1}{|A|} \frac{||\mathbf{x} - \mathbf{y}||^2}{\cos \theta_{\mathbf{y}}}$$
Conversion of the uniform pdf 1/|A|
from the area measure (dA) to the solid
angle measure (d ω)
CG III (NPGR010) - J. Křivánek 2015

Contributions of the sampling techniques

w_a * BRDF sampling

w_b * light source area sampling

Alternative combination heuristics

"Low variance problems"

- Whenever one sampling technique yields a very low variance estimator, balance heuristic can be suboptimal
- "Power heuristic" or other heuristics can be better in such a case – see next slide

(a) The balance heuristic.

(b) The cutoff heuristic ($\alpha = 0.1$).

Other examples of MIS applications

In the following we apply MIS to combine full path sampling techniques for calculating light transport in participating media.

Full transport

rare, fwd-scattering fog

back-scattering high albedo

back-scattering

Medium transport only

Beam-Beam 1D (=photon beams)

Point-Beam 2D (=BRE)

Bidirectional PT

Beam-Beam 1D

Point-Beam 2D

Bidirectional PT

Beam-Beam 1D

Point-Beam 2D

Bidirectional PT

UPBP (our algorithm) 1 hour