Computer graphics III Multiple Importance Sampling

Jaroslav Křivánek, MFF UK
Jaroslav.Krivanek@mff.cuni.cz

Sampling of environment lighting

$$
L_{\mathrm{r}}\left(\omega_{\mathrm{o}}\right)=\int_{H(\mathbf{x})} L_{\mathrm{i}}\left(\omega_{\mathrm{i}}\right) \cdot f_{r}\left(\omega_{\mathrm{i}} \rightarrow \omega_{\mathrm{o}}\right) \cdot \cos \theta_{\mathrm{i}} \mathrm{~d} \omega_{\mathrm{i}}
$$

Sampling of environment lighting

Sampling of environment lighting

- Two different sampling strategies for generating the incident direction ω_{i}

1. BRDF-proportional sampling - $p_{\mathrm{a}}\left(\omega_{\mathrm{i}}\right)$
2. Environment map-proportional sampling - $p_{\mathrm{b}}\left(\omega_{\mathrm{i}}\right)$

What is wrong with using either of the two strategies alone?

Notes on the previous slide

- We have a complex multimodal integrand $f(x)$ that we want to numerically integrate using a MC method with importance sampling.
- Unfortunately, we do not have a PDF that would mimic the integrand in the entire domain.
- Instead, we can draw the sample from two different PDFs, p_{a} and p_{b} each of which is a good match for the integrand under different conditions - i.e. in different part of the domain.
- However, the estimators corresponding to these two PDFs have extremely high variance - shown on the slide.
- We can use Multiple Importance Sampling (MIS) to combine the sampling techniques corresponding to the two PDFs into a single, robust, combined technique.
- The MIS procedure is extremely simple: sample from both techniques p_{a} and p_{b}, and then takes the sample from the selected distribution.
- This estimator is really powerful at suppressing outlier samples such as those that you would obtain by picking x _from the tail of p_{a}, where $f(x)$ might still be large.
- Without having p_{b} at our disposal, we would be dividing the large $f(x)$ by the small $p_{a}(x)$, producing an outlier.
- However, the combined technique has a much higher chance of producing this particular x (because it can sample it also from p_{b}), so the combined estimator divides $f(x)$ by $\left[p_{a}(x)+p_{b}(x)\right] / 2$, which yields a much more reasonable sample value.
- I want to note that what I'm showing here is called the "balance heuristic" and is a part of a wider theory on weighted combinations of estimators proposed by Veach and Guibas.

Multiple Importance Sampling

First for general estimators, so please forget the direct illumination problem for a short while.

-Start with enviro example

Multiple Importance Sampling

- Given n sampling techniques (i.e. pdfs) $p_{1}(\mathrm{x}), . ., p_{n}(\mathrm{x})$
- We take n_{i} samples $X_{i, 1}$.. , $X_{i, n_{i}}$ from each technique
- Combined estimator

Combination weights (different for each sample)

Unbiasedness of the combined estimator

$$
E[F]=\ldots=\int\left[\sum_{i=1}^{n} w_{i}(x)\right] f(x) \mathrm{d} x \equiv \int f(x)
$$

- Condition on the weighting functions

$$
\forall x: \quad \sum_{i=1}^{n} w_{i}(x)=1
$$

Choice of the weighting functions

- Objective: minimize the variance of the combined estimator

1. Arithmetic average (very bad combination)

$$
w_{i}(x)=\frac{1}{n}
$$

2. Balance heuristic (very good combination)

Balance heuristic

- Combination weights

$$
\hat{w}_{i}(\mathbf{x})=\frac{n_{i} p_{i}(\mathbf{x})}{\sum_{k} n_{k} p_{k}(\mathbf{x})}
$$

- Resulting estimator (after plugging the weights)

$$
F=\sum_{i=1}^{n} \sum_{j=1}^{n_{i}} \frac{f\left(X_{i, j}\right)}{\sum_{k} n_{k} p_{k}\left(X_{i, j}\right)}
$$

- The contribution of a sample does not depend on which technique (pdf) it came from
- Effectively, the sample is drawn from a weighted average of the individual pdfs - as can be seen from the form of the estimator

Balance heuristic

- The balance heuristic is almost optimal
- No other weighting has variance much lower than the balance heuristic

Direct illumination calculation using MIS

Application of MIS to environment light sampling

- Two sampling strategies for generating the incident direction ω_{i}

1. BRDF-proportional sampling - $p_{\mathrm{a}}\left(\omega_{\mathrm{i}}\right)$
2. Environment map-proportional sampling - $p_{\mathrm{b}}\left(\omega_{\mathrm{i}}\right)$

- Mindlessly plug $p_{\mathrm{a}}\left(\omega_{\mathrm{i}}\right)$ and $p_{\mathrm{b}}\left(\omega_{\mathrm{i}}\right)$ into the general formulas above

MIS applied to enviro sampling

Diffuse only
Ward BRDF, $\alpha=0.2$ Ward BRDF, $\alpha=0.05$
Ward BRDF, $\alpha=0.01$

Area light sampling - Motivation

Sampling technique (pdf) \mathbf{p}_{a} : BRDF sampling

Sampling technique (pdf) \mathbf{p}_{b} : Light source area sampling

MIS-based combination

Arithmetic average
Preserves bad properties

MIS w/ the balance heuristic Bingo!!!

Area light sampling - Classic Veach's example

BRDF proportional sampling

Light source area sampling

MIS-based combination

- Multiple importance sampling \& Balance heuristic (Veach \& Guibas, 95)

CG III (NPGR010) - J. Křivánek 2015

Area light sampling - sampling strategies

- Two sampling strategies - as for enviro maps 1. BRDF-proportional sampling

2. Light source area sampling

Incoming ray R

Image: Alexander Wilkie
CG III (NPGR010) - J. Křivánek 2015

Direct illumination: Two strategies

- BRDF proportional sampling
- Better for large light sources and/or highly glossy BRDFs
- The probability of hitting a small light source is small -> high variance, noise
- Light source area sampling
- Better for smaller light sources
- It is the only possible strategy for point sources
- For large sources, many samples are generated outside the BRDF lobe -> high variance, noise

Direct illumination: Two strategies

- Which strategy should we choose?
- Both!
- Both strategies estimate the same quantity $L_{\mathrm{r}}\left(\mathbf{x}, \omega_{0}\right)$
- A mere sum would estimate $2 \times L_{\mathrm{r}}\left(\mathbf{x}, \omega_{0}\right)$, which is wrong
- We need a weighted average of the techniques, but how to choose the weights? => MIS

MIS weight calculation

Sample weight for
BRDF sampling

$$
w_{a}\left(\omega_{j}\right)=\frac{p_{a}\left(\omega_{j}\right)}{p_{a}\left(\omega_{j}\right)+p_{b}\left(\omega_{j}\right)}
$$

PDF with which the direction ω_{j} would have been generated, if we used light source area sampling

Example PDFs

- BRDF sampling: $\mathbf{p}_{\mathbf{a}}(\omega)$
- Depends on the BRDF, e.g. for a Lambertian BRDF:

$$
p_{a}(\omega)=\frac{\cos \theta_{\mathbf{x}}}{\pi}
$$

- Light source area sampling: $\mathbf{p}_{\mathbf{b}}(\omega)$

$$
p_{b}(\omega)=\frac{1}{|A|} \frac{\|\mathbf{x}-\mathbf{y}\|^{2}}{\cos \theta_{\mathbf{y}}}
$$

Conversion of the uniform pdf $1 /|\mathrm{A}|$ from the area measure (dA) to the solid angle measure ($\mathrm{d} \omega$)

Contributions of the sampling techniques

$\mathbf{w}_{\mathrm{a}}{ }^{*}$ BRDF sampling
w_{b} * light source area sampling

Alternative combination heuristics

- "Low variance problems"
- Whenever one sampling technique yields a very low variance estimator, balance heuristic can be suboptimal
- "Power heuristic" or other heuristics can be better in such a case - see next slide

(a) The balance heuristic.

(c) The power heuristic $(\beta=2)$.

(b) The cutoff heuristic $(\alpha=0.1)$.

(d) The maximum heuristic.

Other examples of MIS applications

In the following we apply MIS to combine full path sampling techniques for calculating light transport in participating media.

Full transport

rare, fwd-scattering fog
back-scattering high allbedo
back-scattering

Medium transport only

Beam-Beam 1D (=photon beams)
Point-Beam 2D (=BRE)

Bidirectional PT

Beam-Beam 1D
Bidirectional PT

UPBP (our algorithm) 1 hour

